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REFERENCES	INDEX	695	700	705	720	757	759	7.	Preface	A	course	in	system	dynamics	that	deals	with	mathematical	modeling	and	response	analyses	of	dynamic	systems	is	required	in	most	mechanical	and	other	engineering	curricula.	This	book	is	written	as	a	textbook	for	such	a	course.	It	is	written	at	the	junior	level	and	presents	a	comprehensive
treatment	of	modeling	and	analyses	of	dynamic	systems	and	an	introduction	to	control	systems.	Prerequisites	for	studying	this	book	are	first	courses	in	linear	algebra,	intro-	ductory	differential	equations,	introductory	vector-matrix	analysis,	mechanics,	cir-	cuit	analysis,	and	thermodynamics.Thermodynamics	may	be	studied	simultaneously.	Main
revisions	made	in	this	edition	are	to	shift	the	state	space	approach	to	modeling	dynamic	systems	to	Chapter	5,	right	next	to	the	transfer	function	approach	to	modeling	dynamic	systems,	and	to	add	numerous	examples	for	modeling	and	response	analyses	of	dynamic	systems.All	plottings	of	response	curves	are	done	with	MATLAB.	Detailed	MATLAB
programs	are	provided	for	MATLAB	works	pre-	sented	in	this	book.	This	text	is	organized	into	11	chapters	and	four	appendixes.	Chapter	1	presents	an	introduction	to	system	dynamics.	Chapter	2	deals	with	Laplace	transforms	of	commonly	encountered	time	functions	and	some	theorems	on	Laplace	transform	that	are	useful	in	analyzing	dynamic
systems.	Chapter	3	discusses	details	of	mechan-	ical	elements	and	simple	mechanical	systems.This	chapter	includes	introductory	dis-	cussions	of	work,	energy,	and	power.	Chapter	4	discusses	the	transfer	function	approach	to	modeling	dynamic	sys-	tems.	'lransient	responses	of	various	mechanical	systems	are	studied	and	MATLAB	is	used	to	obtain
response	curves.	Chapter	5	presents	state	space	modeling	of	dynam-	ic	systems.	Numerous	examples	are	considered.	Responses	of	systems	in	the	state	space	form	are	discussed	in	detail	and	response	curves	are	obtained	with	MATLAB.	Chapter	6	treats	electrical	systems	and	electromechanical	systems.	Here	we	included	mechanical-electrical
analogies	and	operational	amplifier	systems.	Chapter	7	vii	8.	viii	Preface	deals	with	mathematical	modeling	of	fluid	systems	(such	as	liquid-level	systems,	pneumatic	systems,	and	hydraulic	systems)	and	thermal	systems.	A	linearization	technique	for	nonlinear	systems	is	presented	in	this	chapter.	Chapter	8	deals	with	the	time-domain	analysis	of
dynamic	systems.	Transient-	response	analysis	of	first-order	systems,	second-order	systems,	and	higher	order	sys-	tems	is	discussed	in	detail.	This	chapter	includes	analytical	solutions	of	state-space	equations.	Chapter	9	treats	the	frequency-domain	analysis	of	dynamic	systems.	We	first	present	the	sinusoidal	transfer	function,	followed	by	vibration
analysis	of	mechanical	systems	and	discussions	on	dynamic	vibration	absorbers.	Then	we	dis-	cuss	modes	of	vibration	in	two	or	more	degrees-of-freedom	systems.	Chapter	10	presents	the	analysis	and	design	of	control	systems	in	the	time	domain.	After	giving	introductory	materials	on	control	systems,	this	chapter	discusses	transient-response	analysis
of	control	systems,	followed	by	stability	analysis,	root-locus	analysis,	and	design	of	control	systems.	Fmally,	we	conclude	this	chapter	by	giving	tun-	ing	rules	for	PID	controllers.	Chapter	11	treats	the	analysis	and	design	of	control	sys-	tems	in	the	frequency	domain.	Bode	diagrams,	Nyquist	plots,	and	the	Nyquist	stability	criterion	are	discussed	in
detail.	Several	design	problems	using	Bode	diagrams	are	treated	in	detail.	MATLAB	is	used	to	obtain	Bode	diagrams	and	Nyquist	plots.	Appendix	A	summarizes	systems	of	units	used	in	engineering	analyses.	Appendix	B	provides	useful	conversion	tables.	Appendix	C	reviews	briefly	a	basic	vector-matrix	algebra.	Appendix	D	gives	introductory	materials
on	MATLAB.	If	the	reader	has	no	prior	experience	with	MATLAB,	it	is	recommended	that	he/she	study	Appendix	D	before	attempting	to	write	MATLAB	programs.	Throughout	the	book,	examples	are	presented	at	strategic	points	so	that	the	reader	will	have	a	better	understanding	of	the	subject	matter	discussed.	In	addition,	a	number	of	solved
problems	(A	problems)	are	provided	at	the	end	of	each	chapter,	except	Chapter	1.	These	problems	constitute	an	integral	part	of	the	text.	It	is	sug-	gested	that	the	reader	study	all	these	problems	carefully	to	obtain	a	deeper	under-	standing	of	the	topics	discussed.	Many	unsolved	problems	(B	problems)	are	also	provided	for	use	as	homework	or	quiz
problems.	An	instructor	using	this	text	for	hislher	system	dynamics	course	may	obtain	a	complete	solutions	manual	for	B	prob-	lems	from	the	publisher.	Most	of	the	materials	presented	in	this	book	have	been	class	tested	in	courses	in	the	field	of	system	dynamics	and	control	systems	in	the	Department	of	Mechani-	cal	Engineering,	University	of
Minnesota	over	many	years.	If	this	book	is	used	as	a	text	for	a	quarter-length	course	(with	approximately	30	lecture	hours	and	18	recitation	hours),	Chapters	1	through	7	may	be	covered.	After	studying	these	chapters,	the	student	should	be	able	to	derive	mathematical	models	for	many	dynamic	systems	with	reasonable	simplicity	in	the	forms	of
transfer	func-	tion	or	state-space	equation.	Also,	he/she	will	be	able	to	obtain	computer	solutions	of	system	responses	with	MATLAB.	If	the	book	is	used	as	a	text	for	a	semester-	length	course	(with	approximately	40	lecture	hours	and	26	recitation	hours),	then	the	first	nine	chapters	may	be	covered	or,	alternatively,	the	first	seven	chapters	plus
Chapters	10	and	11	may	be	covered.	If	the	course	devotes	50	to	60	hours	to	lectures,	then	the	entire	book	may	be	covered	in	a	semester.	9.	Preface	ix	Fmally,	I	wish	to	acknowledge	deep	appreciation	to	the	following	professors	who	reviewed	the	third	edition	of	this	book	prior	to	the	preparation	of	this	new	edi-	tion:	R.	Gordon	Kirk	(Vrrginia	Institute
of	Technology),	Perry	Y.	Li	(University	of	Minnesota),	Sherif	Noah	(Texas	A	&	M	University),	Mark	L.	Psiaki	(Cornell	Uni-	versity),	and	William	Singhose	(Georgia	Institute	of	Technology).	Their	candid,	insightful,	and	constructive	comments	are	reflected	in	this	new	edition.	KATSUHIKO	OGATA	10.	Introduction	to	System	Dynamics	1-1	INTRODUCTION
System	dynamics	deals	with	the	mathematical	modeling	of	dynamic	systems	and	response	analyses	of	such	systems	with	a	view	toward	understanding	the	dynamic	nature	of	each	system	and	improving	the	system's	performance.	Response	analyses	are	frequently	made	through	computer	simulations	of	dynamic	systems.	Because	many	physical	systems
involve	various	types	of	components,	a	wide	variety	of	different	types	of	dynamic	systems	will	be	examined	in	this	book.	The	analysis	and	design	methods	presented	can	be	applied	to	mechanical,	electrical,	pneumatic,	and	hydraulic	systems,	as	well	as	nonengineering	systems,	such	as	eco-	nomic	systems	and	biological	systems.	It	is	important	that	the
mechanical	engineer-	ing	student	be	able	to	determine	dynamic	responses	of	such	systems.	We	shall	begin	this	chapter	by	defining	several	terms	that	must	be	understood	in	discussing	system	dynamics.	Systems.	A	system	is	a	combination	of	components	acting	together	to	per-	form	a	specific	objective.A	component	is	a	single	functioning	unit	of	a
system.	By	no	means	limited	to	the	realm	of	the	physical	phenomena,	the	concept	of	a	system	can	be	extended	to	abstract	dynamic	phenomena,	such	as	those	encountered	in	eco-	nomics,	transportation,	population	growth,	and	biology.	1	11.	2	Introduction	to	System	Dynamics	Chap.	1	A	system	is	called	dynamic	if	its	present	output	depends	on	past
input;	if	its	current	output	depends	only	on	current	input,	the	system	is	known	as	static.The	out-	put	of	a	static	system	remains	constant	if	the	input	does	not	change.	The	output	changes	only	when	the	input	changes.	In	a	dynamic	system,	the	output	changes	with	time	if	the	system	is	not	in	a	state	of	equilibrium.	In	this	book,	we	are	concerned	mostly
with	dynamic	systems.	Mathematical	models.	Any	attempt	to	design	a	system	must	begin	with	a	prediction	of	its	performance	before	the	system	itself	can	be	designed	in	detail	or	ac-	tually	built.	Such	prediction	is	based	on	a	mathematical	description	of	the	system's	dynamic	characteristics.	This	mathematical	description	is	called	a	mathematical
model.	For	many	physical	systems,	useful	mathematical	models	are	described	in	terms	of	differential	equations.	Linear	and	nonlinear	differential	equations.	Linear	differential	equations	may	be	classified	as	linear,	time-invariant	differential	equations	and	linear,	time-	varying	differential	equations.	A	linear,	time-invariant	differential	equation	is	an
equation	in	which	a	depen-	dent	variable	and	its	derivatives	appear	as	linear	combinations.	An	example	of	such	an	equation	is	d2x	dx	-	+	5-	+	lOx	=0	dt2	dt	Since	the	coefficients	of	all	terms	are	constant,	a	linear,	time-invariant	differential	equation	is	also	called	a	linear,	constant-coefficient	differential	equation.	In	the	case	of	a	linear,	time-varying
differential	equation,	the	dependent	vari-	able	and	its	derivatives	appear	as	linear	combinations,	but	a	coefficient	or	coeffi-	cients	of	terms	may	involve	the	independent	variable.	An	example	of	this	type	of	differential	equation	is	d2	x	-	+	(1	-	cos	2t)x	=	0	dt2	It	is	important	to	remember	that,	in	order	to	be	linear,	the	equation	must	con-	tain	no	powers	or
other	functions	or	products	of	the	dependent	variables	or	its	derivatives.	A	differential	equation	is	called	nonlinear	if	it	is	not	linear.	Two	examples	of	nonlinear	differential	equations	are	and	12.	Sec.	1-2	Mathematical	Modeling	of	Dynamic	Systems	3	Linear	systems	and	nonlinear	systems.	For	linear	systems,	the	equations	that	constitute	the	model	are
linear.	In	this	book,	we	shall	deal	mostly	with	linear	sys-	tems	that	can	be	represented	by	linear,	time-invariant	ordinary	differential	equations.	The	most	important	property	oflinear	systems	is	that	the	principle	ofsuperpo-	sition	is	applicable.This	principle	states	that	the	response	produced	by	simultaneous	applications	of	two	different	forcing	functions
or	inputs	is	the	sum	of	two	individual	responses.	Consequently,	for	linear	systems,	the	response	to	several	inputs	can	be	calculated	by	dealing	with	one	input	at	a	time	and	then	adding	the	results.	As	a	result	of	superposition,	complicated	solutions	to	linear	differential	equations	can	be	derived	as	a	sum	of	simple	solutions.	In	an	experimental
investigation	of	a	dynamic	system,	if	cause	and	effect	are	proportional,	thereby	implying	that	the	principle	of	superposition	holds,	the	system	can	be	considered	linear.	Although	physical	relationships	are	often	represented	by	linear	equations,	in	many	instances	the	actual	relationships	may	not	be	quite	linear.	In	fact,	a	careful	study	of	physical	systems
reveals	that	so-called	linear	systems	are	actually	linear	only	within	limited	operating	ranges.	For	instance,	many	hydraulic	systems	and	pneumatic	systems	involve	nonlinear	relationships	among	their	variables,	but	they	are	frequently	represented	by	linear	equations	within	limited	operating	ranges.	For	nonlinear	systems,	the	most	important
characteristic	is	that	the	principle	of	superposition	is	not	applicable.	In	general,	procedures	for	finding	the	solutions	of	problems	involving	such	systems	are	extremely	complicated.	Because	of	the	mathe-	matical	difficulty	involved,	it	is	frequently	necessary	to	linearize	a	nonlinear	system	near	the	operating	condition.	Once	a	nonlinear	system	is
approximated	by	a	linear	mathematical	model,	a	number	of	linear	techniques	may	be	used	for	analysis	and	design	purposes.	Continuous-time	systems	and	discrete-time	systems.	Continuous-time	systems	are	systems	in	which	the	signals	involved	are	continuous	in	time.	These	sys-	tems	may	be	described	by	differential	equations.	Discrete-time	systems
are	systems	in	which	one	or	more	variables	can	change	only	at	discrete	instants	of	time.	(These	instants	may	specify	the	times	at	which	some	physical	measurement	is	performed	or	the	times	at	which	the	memory	of	a	digital	computer	is	read	out.)	Discrete-time	systems	that	involve	digital	signals	and,	possi-	bly,	continuous-time	signals	as	well	may	be
described	by	difference	equations	after	the	appropriate	discretization	of	the	continuous-time	signals.	The	materials	presented	in	this	text	apply	to	continuous-time	systems;	discrete-	time	systems	are	not	discussed.	1-2	MATHEMATICAL	MODELING	OF	DYNAMIC	SYSTEMS	Mathematical	modeling.	Mathematical	modeling	involves	descriptions	of
important	system	characteristics	by	sets	of	equations.	By	applying	physical	laws	to	a	specific	system,	it	may	be	possible	to	develop	a	mathematical	model	that	describes	the	dynamics	of	the	system.	Such	a	model	may	include	unknown	parameters,	which	13.	4	Introduction	to	System	Dynamics	Chap.	1	must	then	be	evaluated	through	actual	tests.
Sometimes,	however,	the	physical	laws	governing	the	behavior	of	a	system	are	not	completely	defined,	and	formulating	a	mathematical	model	may	be	impossible.	Ifso,	an	experimental	modeling	process	can	be	used.	In	this	process,	the	system	is	subjected	to	a	set	of	known	inputs,	and	its	out-	puts	are	measured.Then	a	mathematical	model	is	derived
from	the	input-output	re-	lationships	obtained.	Simplicity	of	mathematical	model	versus	accuracy	of	results	of	analysis.	In	attempting	to	build	a	mathematical	model,	a	compromise	must	be	made	between	the	simplicity	of	the	model	and	the	accuracy	of	the	results	of	the	analysis.	It	is	im-	portant	to	note	that	the	results	obtained	from	the	analysis	are
valid	only	to	the	ex-	tent	that	the	model	approximates	a	given	physical	system.	In	determining	a	reasonably	simplified	model,	we	must	decide	which	physical	variables	and	relationships	are	negligible	and	which	are	crucial	to	the	accuracy	of	the	model.	To	obtain	a	model	in	the	form	of	linear	differential	equations,	any	dis-	tributed	parameters	and
nonlinearities	that	may	be	present	in	the	physical	system	must	be	ignored.	If	the	effects	that	these	ignored	properties	have	on	the	response	are	small,	then	the	results	of	the	analysis	of	a	mathematical	model	and	the	results	of	the	experimental	study	of	the	physical	system	will	be	in	good	agreement.	Whether	any	particular	features	are	important	may
be	obvious	in	some	cases,	but	may,	in	other	instances,	require	physical	insight	and	intuition.	Experience	is	an	important	factor	in	this	connection.	Usually,	in	solving	a	new	problem,	it	is	desirable	first	to	build	a	simplified	model	to	obtain	a	general	idea	about	the	solution.Afterward,	a	more	detailed	math-	ematical	model	can	be	built	and	used	for	a	more
complete	analysis.	Remarks	on	mathematical	models.	The	engineer	must	always	keep	in	mind	that	the	model	he	or	she	is	analyzing	is	an	approximate	mathematical	descrip-	tion	of	the	physical	system;	it	is	not	the	physical	system	itself	In	reality,	no	mathe-	matical	model	can	represent	any	physical	component	or	system	precisely.	Approximations	and
assumptions	are	always	involved.	Such	approximations	and	as-	sumptions	restrict	the	range	of	validity	of	the	mathematical	model.	(The	degree	of	approximation	can	be	determined	only	by	experiments.)	So,	in	making	a	prediction	about	a	system's	performance,	any	approximations	and	assumptions	involved	in	the	model	must	be	kept	in	mind.
Mathematical	modeling	procedure.	The	procedure	for	obtaining	a	math-	ematical	model	for	a	system	can	be	summarized	as	follows:	L	Draw	a	schematic	diagram	of	the	system,	and	define	variables.	2.	Using	physical	laws,	write	equations	for	each	component,	combine	them	according	to	the	system	diagram,	and	obtain	a	mathematical	model.	3.	To
verify	the	validity	of	the	model,	its	predicted	performance,	obtained	by	solving	the	equations	of	the	model,	is	compared	with	experimental	results.	(The	question	of	the	validity	of	any	mathematical	model	can	be	answered	only	by	experiment.)	If	the	experimental	results	deviate	from	the	prediction	14.	Sec.	1-3	Analysis	and	Design	of	Dynamic	Systems	5
to	a	great	extent,	the	model	must	be	modified.	A	new	model	is	then	derived	and	a	new	prediction	compared	with	experimental	results.	The	process	is	re-	peated	until	satisfactory	agreement	is	obtained	between	the	predictions	and	the	experimental	results.	1-3	ANALYSIS	AND	DESIGN	OF	DYNAMIC	SYSTEMS	This	section	briefly	explains	what	is
involved	in	the	analysis	and	design	of	dynamic	systems.	Analysis.	System	analysis	means	the	investigation,	under	specified	condi-	tions,	of	the	performance	of	a	system	whose	mathematical	model	is	known.	The	first	step	in	analyzing	a	dynamic	system	is	to	derive	its	mathematical	model.	Since	any	system	is	made	up	of	components,	analysis	must	start
by	developing	a	mathematical	model	for	each	component	and	combining	all	the	models	in	order	to	build	a	model	of	the	complete	system.	Once	the	latter	model	is	obtained,	the	analysis	may	be	formulated	in	such	a	way	that	system	parameters	in	the	model	are	varied	to	produce	a	number	of	solutions.	The	engineer	then	compares	these	solutions	and
interprets	and	applies	the	results	of	his	or	her	analysis	to	the	basic	task.	H	should	always	be	remembered	that	deriving	a	reasonable	model	for	the	complete	system	is	the	most	important	part	of	the	entire	analysis.	Once	such	a	model	is	available,	various	analytical	and	computer	techniques	can	be	used	to	ana-	lyze	it.	The	manner	in	which	analysis	is
carried	out	is	independent	of	the	type	of	physical	system	involved-mechanical,	electrical,	hydraulic,	and	so	on.	Design.	System	design	refers	to	the	process	of	finding	a	system	that	accom-	plishes	a	given	task.	In	general,	the	design	procedure	is	not	straightforward	and	will	require	trial	and	error.	Synthesis.	By	synthesis,	we	mean	the	use	of	an	explicit
procedure	to	find	a	system	that	will	perform	in	a	specified	way.	Here	the	desired	system	characteristics	are	postulated	at	the	outset,	and	then	various	mathematical	techniques	are	used	to	synthesize	a	system	having	those	characteristics.	Generally,	such	a	procedure	is	com-	pletely	mathematical	from	the	start	to	the	end	of	the	design	process.	Basic
approach	to	system	design.	The	basic	approach	to	the	design	of	any	dynamic	system	necessarily	involves	trial-and-error	procedures.	Theoretically,	a	synthesis	of	linear	systems	is	possible,	and	the	engineer	can	systematically	deter-	mine	the	components	necessary	to	realize	the	system's	objective.	In	practice,	howev-	er,	the	system	may	be	subject	to
many	constraints	or	may	be	nonlinear;	in	such	cases,	no	synthesis	methods	are	currently	applicable.	Moreover,	the	features	of	the	com-	ponents	may	not	be	precisely	known.	Thus,	trial-and-error	techniques	are	almost	al-	ways	needed.	Design	procedures.	Frequently,	the	design	of	a	system	proceeds	as	follows:	The	engineer	begins	the	design
procedure	knowing	the	specifications	to	be	met	and	15.	6	Introduction	to	System	Dynamics	Chap.	1	the	dynamics	of	the	components,	the	latter	of	which	involve	design	parameters.The	specification	may	be	given	in	terms	of	both	precise	numerical	values	and	vague	qualitative	descriptions.	(Engineering	specifications	normally	include	statements	on
such	factors	as	cost,	reliability,	space,	weight,	and	ease	of	maintenance.)	It	is	impor-	tant	to	note	that	the	specifications	may	be	changed	as	the	design	progresses,	for	de-	tailed	analysis	may	reveal	that	certain	requirements	are	impossible	to	meet.	Next,	the	engineer	will	apply	any	applicable	synthesis	techniques,	as	well	as	other	meth-	ods,	to	build	a
mathematical	model	of	the	system.	Once	the	design	problem	is	formulated	in	terms	of	a	model,	the	engineer	car-	ries	out	a	mathematical	design	that	yields	a	solution	to	the	mathematical	version	of	the	design	problem.	With	the	mathematical	design	completed,	the	engineer	simu-	lates	the	model	on	a	computer	to	test	the	effects	of	various	inputs	and
disturbances	on	the	behavior	of	the	resulting	system.	If	the	initial	system	configuration	is	not	sat-	isfactory,	the	system	must	be	redesigned	and	the	corresponding	analysis	completed.	This	process	of	design	and	analysis	is	repeated	until	a	satisfactory	system	is	found.	Then	a	prototype	physical	system	can	be	constructed.	Note	that	the	process	of
constructing	a	prototype	is	the	reverse	of	mathemati-	cal	modeling.	The	prototype	is	a	physical	system	that	represents	the	mathematical	model	with	reasonable	accuracy.	Once	the	prototype	has	been	built,	the	engineer	tests	it	to	see	whether	it	is	satisfactory.	If	it	is,	the	design	of	the	prototype	is	com-	plete.	If	not,	the	prototype	must	be	modified	and
retested.	The	process	continues	until	a	satisfactory	prototype	is	obtained.	1-4	SUMMARY	From	the	point	of	view	of	analysis,	a	successful	engineer	must	be	able	to	obtain	a	mathematical	model	of	a	given	system	and	predict	its	performance.	(The	validity	of	a	prediction	depends	to	a	great	extent	on	the	validity	of	the	mathematical	model	used	in	making
the	prediction.)	From	the	design	standpoint,	the	engineer	must	be	able	to	carry	out	a	thorough	performance	analysis	of	the	system	before	a	prototype	is	constructed.	The	objective	of	this	book	is	to	enable	the	reader	(1)	to	build	mathematical	models	that	closely	represent	behaviors	of	physical	systems	and	(2)	to	develop	sys-	tem	responses	to	various
inputs	so	that	he	or	she	can	effectively	analyze	and	design	dynamic	systems.	Outline	of	the	text.	Chapter	1	has	presented	an	introduction	to	system	dy-	namics.	Chapter	2	treats	Laplace	transforms.	We	begin	with	Laplace	transformation	of	simple	time	functions	and	then	discuss	inverse	Laplace	transformation.	Several	useful	theorems	are	derived.
Chapter	3	deals	with	basic	accounts	of	mechanical	sys-	tems.	Chapter	4	presents	the	transfer-function	approach	to	modeling	dynamic	sys-	tems.	The	chapter	discusses	various	types	of	mechanical	systems.	Chapter	5	examines	the	state-space	approach	to	modeling	dynamic	systems.	Various	types	of	mechanical	systems	are	considered.	Chapter	6	treats
electrical	systems	and	electromechanical	systems,	including	operational-amplifier	systems.	Chapter	7	deals	with	fluid	systems,	16.	Sec.	1-4	Summary	7	such	as	liquid-level	systems,	pneumatic	systems,	and	hydraulic	systems,	as	well	as	thermal	systems.	A	linearization	technique	for	nonlinear	systems	is	explored.	Chapter	8	presents	time-domain
analyses	of	dynamic	systems-specifically,	transient-response	analyses	of	dynamic	systems.	The	chapter	also	presents	the	ana-	lytical	solution	of	the	state	equation.	Chapter	9	treats	frequency-domain	analyses	of	dynamic	systems.	Among	the	topics	discussed	are	vibrations	of	rotating	mechanical	systems	and	vibration	isolation	problems.	Also	discussed
are	vibrations	in	multi-	degrees-of-freedom	systems	and	modes	of	vibrations.	Chapter	10	presents	the	basic	theory	of	control	systems,	including	transient-	response	analysis,	stability	analysis,	and	root-locus	analysis	and	design.	Also	dis-	cussed	are	tuning	rules	for	PID	controllers.	Chapter	11	deals	with	the	analysis	and	design	of	control	systems	in	the
frequency	domain.	The	chapter	begins	with	Bode	diagrams	and	then	presents	the	Nyquist	stability	criterion,	followed	by	detailed	design	procedures	for	lead,	lag,	and	lag-lead	compensators.	Appendix	A	treats	systems	of	units,	Appendix	B	summarizes	conversion	tables,	and	Appendix	C	gives	a	brief	summary	of	vector-matrix	algebra.	Appendix	D
presents	introductory	materials	for	MATLAB.	Throughout	the	book,	MATLAB	is	used	for	the	solution	of	most	computa-	tional	problems.	Readers	who	have	no	previous	knowledge	of	MATLAB	may	read	Appendix	D	before	solving	any	MATLAB	problems	presented	in	this	text.	17.	The	Laplace	Transform	2-1	INTRODUCTION	The	Laplace	transform	is	one
of	the	most	important	mathematical	tools	available	for	modeling	and	analyzing	linear	systems.	Since	the	Laplace	transform	method	must	be	studied	in	any	system	dynamics	course,	we	present	the	subject	at	the	begin-	ning	of	this	text	so	that	the	student	can	use	the	method	throughout	his	or	her	study	of	system	dynamics.	The	remaining	sections	of	this
chapter	are	outlined	as	follows:	Section	2-2	reviews	complex	numbers,	complex	variables,	and	complex	functions.	Section	2-3	defines	the	Laplace	transformation	and	gives	Laplace	transforms	of	several	com-	mon	functions	of	time.	Also	examined	are	some	of	the	most	important	Laplace	transform	theorems	that	apply	to	linear	systems	analysis.	Section
2-4	deals	with	the	inverse	Laplace	transformation.	Finally,	Section	2-5	presents	the	Laplace	transform	approach	to	the	solution	of	the	linear,	time-invariant	differential	equation.	2-2	COMPLEX	NUMBERS,	COMPLEX	VARIABLES,	AND	COMPLEX	FUNCTIONS	This	section	reviews	complex	numbers,	complex	algebra,	complex	variables,	and	complex
functions.	Since	most	of	the	material	covered	is	generally	included	in	the	basic	mathematics	courses	required	of	engineering	students,	the	section	can	be	omitted	entirely	or	used	simply	for	personal	reference.	S	18.	Sec.	2-2	Complex	Numbers,	Complex	Variables,	and	Complex	Functions	1m	o	Re	Figure	2-1	Complex	plane	representa-	tion	of	a	complex
number	z.	9	Complex	numbers.	Using	the	notation	j	=	v=I,	we	can	express	all	num-	bers	in	engineering	calculations	as	z	=	x	+	jy	where	z	is	called	a	complex	number	and	x	and	jy	are	its	real	and	imaginary	parts,	respectively.	Note	that	both	x	and	y	are	real	and	that	j	is	the	only	imaginary	quanti-	ty	in	the	expression.	The	complex	plane	representation
of	z	is	shown	in	Figure	2-1.	(Note	also	that	the	real	axis	and	the	imaginary	axis	define	the	complex	plane	and	that	the	combination	of	a	real	number	and	an	imaginary	number	defines	a	point	in	that	plane.)	A	complex	number	z	can	be	considered	a	point	in	the	complex	plane	or	a	directed	line	segment	to	the	point;	both	interpretations	are	useful.	The
magnitude,	or	absolute	value,	of	z	is	defined	as	the	length	of	the	directed	line	segment	shown	in	Figure	2-1.	The	angle	of	z	is	the	angle	that	the	directed	line	segment	makes	with	the	positive	real	axis.	A	counterclockwise	rotation	is	defined	as	the	positive	direction	for	the	measurement	of	angles.	Mathematically,	magnitude	of	z	=	Izl	=	Vx2	+	j,	angle	of
z	=	9	=	tan-1l:'.	x	A	complex	number	can	be	written	in	rectangular	form	or	in	polar	form	as	follows:	z	=	x	+	jy	z	=	Izl(cos	9	+	j	sin	9)	z=	Izl~	z	=	Izl	eifJ	}rectangular	fonns	}polar	forms	In	converting	complex	numbers	to	polar	form	from	rectangular,	we	use	Izl	=	Vx2	+	y2,	8	=	tan-II	x	To	convert	complex	numbers	to	rectangular	form	from	polar,	we
employ	x	=	IzIcos	8,	y	=	Izl	sin	8	Complex	conjugate.	The	complex	conjugate	of	z	=	x	+	j	y	is	defined	as	Z	=	x	-	jy	19.	10	The	Laplace	Transform	Chap.	2	Figure	2-2	Complex	number	zand	its	complex	conjugate	Z,	1m	o	Re	The	complex	conjugate	ofzthus	has	the	same	real	part	as	Z	and	an	imaginary	part	that	is	the	negative	of	the	imaginary	part	of	z.
Figure	2-2	shows	both	zand	Z.	Note	that	z	=	x	+	jy	=	Izl	il	=	Izi	(cos	8	+	j	sin	8)	z	=	x	-	jy	=	Izi	/-8	=	Izi	(cas	8	-	jsin8)	Euler's	theorem.	The	power	series	expansions	of	cos	8	and	sin	8	are,	respectively,	and	Thus,	Since	fi2	£t	86	cos	8	=	1	-	-	+	-	-	-	+	2!	4!	6!	.	83	85	87	sm8	=	8	-	-	+	-	-	-	+	3!	5!	7!	('8)2	('8)3	('8)4	8	+	'	,	8	=	1	+	('8)	+	-'-	+	-'-	+	-'-	+cos	,sm	,	,
3'	4'2.	.	.	it	follows	that	cos	8	+	j	sin	8	=	ejB	This	is	known	as	Euler's	theorem.	Using	Euler's	theorem,	we	can	express	the	sine	and	cosine	in	complex	form.	Noting	that	e-jB	is	the	complex	conjugate	of	ei6	and	that	eiB	=	cos	8	+	j	sin	8	e-jB	=	cos	8	-	j	sin	8	I	20.	Sec.	2-2	Complex	Numbers,	Complex	Variables,	and	Complex	Functions	11	we	find	that	ej8	+
e-j8	cos	8	=	2	.	ej8	-	e-j8	sm8	=	2j	Complex	algebra.	If	the	complex	numbers	are	written	in	a	suitable	form,	op-	erations	like	addition,	subtraction,	multiplication,	and	division	can	be	performed	easily.	Equality	ofcomplex	numbers.	1vo	complex	numbers	z	and	ware	said	to	be	equal	if	and	only	if	their	real	parts	are	equal	and	their	imaginary	parts	are
equal.	So	if	two	complex	numbers	are	written	z	=	x	+	jy,	w	=	u	+	jv	then	z	=	w	if	and	only	if	x	=	u	and	y	=	v.	Addition.	1vo	complex	numbers	in	rectangular	form	can	be	added	by	adding	the	real	parts	and	the	imaginary	parts	separately:	z	+	w	=	(x	+	jy)	+	(u	+	jv)	=	(x	+	u)	+	j(y	+	v)	Subtraction.	Subtracting	one	complex	number	from	another	can	be
consid-	ered	as	adding	the	negative	of	the	former:	z	-	w	=	(x	+	jy)	-	(u	+	jv)	=	(x	-	u)	+	j(y	-	v)	Note	that	addition	and	subtraction	can	be	done	easily	on	the	rectangular	plane.	Multiplication.	If	a	complex	number	is	multiplied	by	a	real	number,	the	re-	sult	is	a	complex	number	whose	real	and	imaginary	parts	are	multiplied	by	that	real	number:	az	=	a(x	+
jy)	=	ax	+	jay	(a	=	real	number)	Iftwo	complex	numbers	appear	in	rectangular	form	and	we	want	the	product	in	rec-	tangular	form,	multiplication	is	accomplished	by	using	the	fact	that	P	=	-1.	Thus,	if	two	complex	numbers	are	written	z	=	x	+	jy,	w	=	u	+	jv	then	zw	=	(x	+	j	y)(u	+	jv)	=	xu	+	j	yu	+	jxv	+	lyv	=	(xu	-	yv)	+	j(xv	+	yu)	In	polar	form,
multiplication	of	two	complex	numbers	can	be	done	easily.	The	mag-	nitude	of	the	product	is	the	product	of	the	two	magnitudes,	and	the	angle	of	the	product	is	the	sum	of	the	two	angles.	So	if	two	complex	numbers	are	written	z	=	Izl~,	w	=	Iwl~	then	zw	=	Izllwl/8	+	cP	21.	12	The	Laplace	Transform	Chap.	2	Multiplication	byJ.	It	is	important	to	note
that	multiplication	by	j	is	equiva-	lent	to	counterclockwise	rotation	by	90°.	For	example,	if	z	=	x	+	jy	then	jz	=	j(x	+	jy)	=	jx	+	py	=	-y	+	jx	or,	noting	that	j	=	1/90°,	if	z	=	Izl	il	then	jz	=	1/90°	Izl	il	=	Izl/8	+	90°	Figure	2-3	illustrates	the	multiplication	of	a	complex	number	z	by	j.	Division.	H	a	complex	number	z	=	IzIil	is	divided	by	another	complex
number	w	=	IwIil.,	then	z	Izi	il	Izi	w	=	Iwl	L.!2.	=	M	18	-	~	That	is,	the	result	consists	of	the	quotient	of	the	magnitudes	and	the	difference	of	the	angles.	Division	in	rectangular	form	is	inconvenient,	but	can	be	done	by	mUltiplying	the	denominator	and	numerator	by	the	complex	conjugate	of	the	denominator.This	procedure	converts	the	denominator	to
a	real	number	and	thus	simplifies	division.	For	instance,	z	x	+	jy	(x	+	jy)(u	-	jv)	(xu	+	yv)	+	j(yu	-	xv)	-	=	-	-	=	=	~--~--.;...~--..;...	w	u	+	jv	(u	+	jv)	(u	-	jv)	u2	+	v2	xu	+	yv	+	.yu	-	xv	=	u	2	+	v	2	J	u2	+	v	2	o	Figure	2-3	Multiplication	of	a	complex	number	z	by	j.	Re	1m	o	Re	Figure	2-4	Division	of	a	complex	number	z	by	j.	22.	Sec.	2-2	Complex	Numbers,
Complex	Variables,	and	Complex	Functions	13	Division	by	j.	Note	that	division	by	j	is	equivalent	to	clockwise	rotation	by	90°.	For	example,	if	z	=	x	+	jy,	then	z	x	+	jy	(x	+	jy)j	jx	-	y	.	-=--=	=--=y-]X	j	j	jj	-1	or	z	Izl	L.P.	j	=	1	/90°	=	Izl	/8	-	90°	Figure	2-4	illustrates	the	division	of	a	complex	number	z	by	j.	Powers	and	roots.	Multiplying	z	by	itself	n	times,	we
obtain	zn	=	(Izl	L.P.)n	=	Izln	/	n8	Extracting	the	nth	root	of	a	complex	number	is	equivalent	to	raising	the	number	to	the	1/nth	power:	For	instance,	and	(8.66	-	j5)3	=	(10	/-30°)3	=	1000	/-90°	=	0	-	j	1000	=	-j	1000	(2.12	-	j2.12)112	=	(9	/	-45°)112	=	3	/	-22.5°	Comments.	It	is	important	to	note	that	Izwl	=	Izllwl	Iz	+	wi	#:	Izi	+	Iwl	Complex	variable.	A
complex	number	has	a	real	part	and	an	imaginary	part,	both	of	which	are	constant.	If	the	real	part	or	the	imaginary	part	(or	both)	are	variables,	the	complex	number	is	called	a	complex	variable.	In	the	Laplace	transfor-	mation,	we	use	the	notation	s	to	denote	a	complex	variable;	that	is,	s	=	u	+	jw	where	u	is	the	real	part	and	jw	is	the	imaginary	part.
(Note	that	both	u	and	ware	real.)	Complex	function.	A	complex	function	F(s),	a	function	of	s,	has	a	real	part	and	an	imaginary	part,	or	F(s)	=	Fx	+	jFy	where	Fx	and	Fy	are	real	quantities.	The	magnitude	of	F(s)	is	VFi	+	F~,	and	the	angle	8	of	F(s)	is	tan-1	(FylFx	)'	The	angle	is	measured	counterclockwise	from	the	positive	real	axis.The	complex
conjugate	of	F(s)	is	pes)	=	Fx	-	jFy-	Complex	functions	commonly	encountered	in	linear	systems	analysis	are	single-	valued	functions	of	s	and	are	uniquely	determined	for	a	given	value	of	s.1}rpically,	23.	14	The	Laplace	Transform	Chap.	2	such	functions	have	the	form	K(s	+	ZI)(S	+	Z2)	...	(s	+	Zm)	F(s)	-	---:...-..---.;...~-----	-	(s	+	PI)(S	+	P2)	...	(s	+	Pn)
Points	at	which	F(s)	equals	zero	are	called	zeros.	That	is,	s	=	-Zh	S	=	-Z2,	...	,	s	=	-Zm	are	zeros	of	F(s).	[Note	that	F(s)	may	have	additional	zeros	at	infinity;	see	the	illustrative	example	that	follows.]	Points	at	which	F(s)	equals	infinity	are	called	poles.	That	is,	s	=	-PI,	S	=	-	P2,	...	,	s	=	-	Pn	are	poles	of	F(s).	If	the	denominator	of	F(s)	involves	k-multiple
factors	(s	+	Pl,	then	s	=	-pis	called	a	multiplepole	of	order	k	or	repeated	pole	of	order	k.1f	k	=	1,	the	pole	is	called	a	simple	pole.	As	an	illustrative	example,	consider	the	complex	function	JC(s	+	2)(s	+	10)	G(s)	-	-------~	-	s(s	+	l)(s	+	5)(s	+	15)2	G(s)	has	zeros	at	s	=	-2	and	s	=	-10,	simple	poles	at	s	=	0,	s	=	-1,	and	s	=	-5,	and	a	double	pole	(multiple	pole
of	order	2)	at	s	=	-15.	Note	that	G(s)	becomes	zero	at	s	=	00.	Since,	for	large	values	ofs,	K	G(s)	*	3s	it	follows	that	G(s)	possesses	a	triple	zero	(multiple	zero	of	order	3)	at	s	=	00.	If	points	at	infinity	are	included,	G(s)	has	the	same	number	of	poles	as	zeros.	To	sum-	marize,	G(s)	has	five	zeros	(s	=	-2,	s	=	-10,	s	=	00,	s	=	00,	s	=	00)	and	five	poles	(s	=	0,



s	=	-1,	s	=	-5,	s	=	-15,	s	=	-15).	2-3	LAPLACE	TRANSFORMATION	The	Laplace	transform	method	is	an	operational	method	that	can	be	used	advanta-	geously	in	solving	linear,	time-invariant	differential	equations.	Its	main	advantage	is	that	differentiation	of	the	time	function	corresponds	to	multiplication	of	the	trans-	form	by	a	complex	variable	s,	and
thus	the	differential	equations	in	time	become	algebraic	equations	in	s.The	solution	of	the	differential	equation	can	then	be	found	by	using	a	Laplace	transform	table	or	the	partial-fraction	expansion	technique.	Another	advantage	of	the	Laplace	transform	method	is	that,	in	solving	the	differen-	tial	equation,	the	initial	conditions	are	automatically	taken
care	of,	and	both	the	par-	ticular	solution	and	the	complementary	solution	can	be	obtained	simultaneously.	Laplace	transformation.	Let	us	define	/(t)	=	a	time	function	such	that	/(t)	=°for	t	<	0	s	=	a	complex	variable	9!,	=	an	operational	symbol	indicating	that	the	quantity	upon	which	it	operates	is	to	be	transformed	by	the	Laplace	integral100	e-st	dt
F(s)	=	Laplace	transform	off(t)	24.	Sec.	2-3	Laplace	Transformation	15	Then	the	Laplace	transform	off(t)	is	given	by	~[f(t)]	=	F(s)	=	l"'e-n	dt[f(t)]	=	l"'f(t)e-n	dt	The	reverse	process	of	finding	the	time	function	f(t)	from	the	Laplace	transform	F(s)	is	called	inverse	Laplace	trans/ormation.The	notation	for	inverse	Laplace	trans-	formation	is	;r1.	Thus,
;rl[F(s)]	=	/(t)	Existence	of	Laplace	transform.	The	Laplace	transform	of	a	function	f(t)	exists	if	the	Laplace	integral	converges.	The	integral	will	converge	iff(t)	is	piecewise	continuous	in	every	finite	interval	in	the	range	t	>	0	and	if	I(t)	is	of	exponential	order	as	t	approaches	infinity.	A	function	f(t)	is	said	to	be	of	exponential	order	if	a	real,	positive
constant	u	exists	such	that	the	function	e-atl/(t)I	approaches	zero	as	t	approaches	infinity.	If	the	limit	of	the	function	e-utl/(t)I	approaches	zero	for	u	greater	than	uc	and	the	limit	approaches	infinity	for	u	less	than	uC'	the	value	uc	is	called	the	abscissa	0/convergence.	It	can	be	seen	that,	for	such	functions	as	t,	sin	wt,	and	t	sin	wt,	the	abscissa	of
convergence	is	equal	to	zero.	For	functions	like	e-ct	,	te-ct	,	and	e-ct	sin	wt,	the	abscis-	sa	of	convergence	is	equal	to	-c.	In	the	case	of	functions	that	increase	faster	than	the	exponential	function,	it	is	impossible	to	find	suitable	values	of	the	abscissa	of	convergence.	Consequently,	such	functions	as	il	and	ter	do	not	possess	Laplace	transforms.
Nevertheless,	it	should	be	noted	that,	although	er	for	0	s	t	S	00	does	not	possess	a	Laplace	transform,	the	time	function	defined	by	/(t)	=	er	=0	for	0	:s;	t	:s;	T	<	00	for	t	<	0,	T	<	t	does,	since	/	(t)	=	er	for	only	a	limited	time	interval	0	S	t	!5	T	and	not	for	oS	t	S	00.	Such	a	signal	can	be	physically	generated.	Note	that	the	signals	that	can	be	physically
generated	always	have	corresponding	Laplace	transforms.	If	functions	11(t)	and	h(t)	are	both	Laplace	transformable,	then	the	Laplace	transform	of11(t)	+	h(t)	is	given	by	;e[fl(t)	+	h(t)]	=	;e[f1(t)]	+	;e[f2(t)]	Exponential	function.	Consider	the	exponential	function	/	(t)	=	0	for	t	<	0	=Ae-at	for	t	~	0	where	A	and	a	are	constants.	The	Laplace	transform	of
this	exponential	function	can	be	obtained	as	follows:	1	00	100	A;e[Ae-at]	=	Ae-ate-st	dt	=	A	e-(a+s)t	dt	=	-	-	o	0	s	+	a	25.	16	The	Laplace	Transform	Chap.	2	In	performing	this	integration,	we	assume	that	the	real	part	of	s	is	greater	than	-a	(the	abscissa	of	convergence),	so	that	the	integral	converges.	The	Laplace	trans-	form	F(s}	of	any	Laplace
transformable	functionf(t)	obtained	in	this	way	is	valid	throughout	the	entire	s	plane,	except	at	the	poles	of	F(s).	(Although	we	do	not	pre-	sent	a	proof	of	this	statement,	it	can	be	proved	by	use	of	the	theory	of	complex	variables.)	Step	function.	Consider	the	step	function	f	(t)	=	0	for	t	<	0	=	A	fort>	0	where	A	is	a	constant.	Note	that	this	is	a	special
case	of	the	exponential	function	Ae-at,	where	a	=	O.	The	step	function	is	undefined	at	t	=	O.	Its	Laplace	transform	is	given	by	1	00	A	;£[A]	=	Ae-st	dt	=	-	o	s	The	step	function	whose	height	is	unity	is	called	a	unit-step	function.	The	unit-	step	function	that	occurs	at	t	=	to	is	frequently	written	l(t	-	to),	a	notation	that	will	be	used	in	this	book.The
preceding	step	function	whose	height	is	A	can	thus	be	writ-	tenA1(t}.	The	Laplace	transform	of	the	unit-step	function	that	is	defined	by	is	lis,	or	l(t)	=	0	=1	for	t	<	0	for	t	>	0	~[l(t)]	=	!s	Physically,	a	step	function	occurring	at	t	=to	corresponds	to	a	constant	signal	suddenly	applied	to	the	system	at	time	t	equals	to.	Ramp	function.	Consider	the	ramp
function	f(t)	=	0	=	At	for	t	<	0	for	t	~	0	where	A	is	a	constant.The	Laplace	transform	of	this	ramp	function	is	!'eIAt]	=	A	["'te-Sf	dt	To	evaluate	the	integral,	we	use	the	formula	for	integration	by	parts:	[budv	=Uvl:	-	[bVdU	26.	Sec.	2-3	Laplace	Transformation	In	this	case,	U	=t	and	dv	=e-st	dt.	[Note	that	v	=	e-SII(	-s).]	Hence,	100	(	-sl	I00	100	-Sf	)	;e[At]
=	A	te-sr	dt	=	A	t	~	-	~dt	o	-s	0	o-s	=	A	fooe-sr	dt	=	A	s	10	s2	Sinusoidal	function.	The	Laplace	transform	of	the	sinusoidal	function	J(t)	=	0	for	t	<	0	=	A	sin	wt	for	t	~	0	where	A	and	ware	constants,	is	obtained	as	follows:	Noting	that	ejw1	=	cos	wt	+	j	sin	wt	and	e-jwt	=	cos	wt	-	j	sin	wt	we	can	write	Hence,	AlOO	•	•~[A	sin	wt]	=	--:	(eJwt	-	e-Jwt)e-st	dt
2J	0	Al	A1	Aw	=	-	-	-	-	-	-	-	=	2j	s	-	jw	2j	s	+	jw	s2	+	w2	Similarly,	the	Laplace	transform	of	A	cos	wt	can	be	derived	as	follows:	As	;erA	cos	wt]	=	2	2	S	+	w	17	Comments.	The	Laplace	transform	of	any	Laplace	transformable	function	f(t)	can	be	found	by	multiplying	f(t)	by	e-st	and	then	integrating	the	product	from	t	=	0	to	t	=	00.	Once	we	know	the
method	of	obtaining	the	Laplace	transform,	how-	ever,	it	is	not	necessary	to	derive	the	Laplace	transform	of	I(t)	each	time.	Laplace	transform	tables	can	conveniently	be	used	to	find	the	transform	of	a	given	function	f(t).	Table	2-1	shows	Laplace	transforms	of	time	functions	that	will	frequently	appear	in	linear	systems	analysis.	In	Table	2-2,	the
properties	ofLaplace	transforms	are	given.	Translated	function.	Let	us	obtain	the	Laplace	transform	of	the	translated	function	f(t	-	a)l(t	-	a),	where	a	~	O.	This	function	is	zero	for	t	<	a.	The	func-	tionsf(t)l(t)	and	f(t	-	a)1(t	-	a)	are	shown	in	Figure	2-5.	By	definition,	the	Laplace	transform	of	J(t	-	a)l(t	-	a)	is	~1f(1	-	a)t(t	-	a)]	=	[,oJ(1	-	a)t(1	-	aV"	dl	27.	18
The	Laplace	Transform	Chap.	2	TABLE	2-1	Laplace	Transform	Pairs	f(t)	F(s)	1	Unit	impulse	cS{t)	1	2	Unit	step	1(t)	1	-	s	1	3	t	s2	4	tn-	1	(n=1,2,3,	...	)	1	-	(n	-	1)!	sn	5	tn	(n=1,2,3,	...	)	n!	-sn+l	6	e-at	1	--s+a	1	7	te-at	(s	+	a)2	1	n-l	-at	(n	=	1,	2,	3,	...	)	1	8	(n	-	1)!	t	e	(s	+	a)n	9	tne-at	(n=1,2,3,	...	)	n!	(s	+	a)n+l	w	10	sin	wt	$2	+	w2	S	11	coswt	s2	+	w2	w	12
sinh	wt	S2	-	(J)2	$	13	cosh	wt	;	-	w2	14	!(1	-	e-at	)	1	a	s(s	+	a)	15	_1_(e-at	_	e-bt)	1	b-a	(s	+	a)(s	+	b)	_1_(be-bt	-	ae-at	)	s	16	(s	+	a)(s	+	b)b-a	~[1	+	_1_(be-at	-	ae-bt)]	1	17	s(s	+	a)(s	+	b)ab	a	-	b	28.	TABLE	2-1	(continued)	r	I	1--	f(t)	I	lpes)	-	18	1	2	(1	e	01	a	ate	01)	1	s(s	+	a)2	-	19	1	'---	2	(at	1	+	e-al)	1	a	s2(s	+	a)	-w	20	e	01	sin	wt	-	(s	+	a)2	+	;;;.	~	21	l.-	e
01	cos	wt	s+a	-	(s	+	a)2	+-;;;	-	22	Wn_	e(wnt·	~~	smwn	1-,2	t	w2	n	2	s	+	2,wns	+	w2	n	-	1-	=e	(Wnl'	(	~	23	~	smwn	1-,2	/	-cJ»	cJ>	=	tan-1YI	-,2	_s	2	S	+	2,wns	+	w2	,	-	n	-	1	1_	_e(wnt·	(	~	24	~	smwn	1-,2	/	+cJ»	cJ>	=	tan-l	!l	-,2	w2	n	S(S2	+	2,wns	+	w1)	'	-	-	w2	25	1	cos	wt	-S(S2	+	w2)	'	-	-	w3	26	wt	-	sin	wt	-	s2(s2	+	(	2)	-	2w3	27	sin	wt	-	wt	cos	wt	-	(s2	+
w2)2	-	28	1	2wI	sin	wI	s	-	(s2	+	w2)2	-	s2	-	w2	29	t	cos	wt	-	(s2	+	(	2)2	-	-	I	_	1	30	~	_:I(cos	WIt	cos	i»2t)	(WI	¢~)	S	(s2	+	wI)(s2	+	~)	-	31	1	2w	(sin	wt	+	wt	cos	wt)	-	S2	(s2	+	(2)2	L..	19	29.	TABLE	2-2	Properties	of	Laplace	Transforms	1	~[Af(t)]	::::	AF(s)	2	~[fl(t)	±	12(t)]	::::	P1(s)	±	F2(S)	3	~±[:tf(t)]	=	sF(s)	-	f(O±)	4	!:e±[:~f(t)]	=	s2p(s)	-	sf(O±)	-	i(O±)
[	dn]	n	(k-l)	~±	dtnf(t)	=	snp(s)	-	~sn-k	f(O±)	5	(k-l)	dk-	1	where	f(t)	::::	dtk-1f(t)	6	[J	]	F(s)	If[(I)	dll/eD<	~±	f(t)dt	=	-	+	s	s	[f!	]	F(s)	If[(I)	dll/eD<	Iff[(I)	dl	dll/eD<	7	~±	f(t)	dt	dt	=	-	2	+	2	+	S	S	s	8	~±[/···1f(t)(dt)n]	=	F(:)	+	±n_	1	k+l	[/···1f(t)(dt)k	]	s	k=l	S	I=O±	9	f£[!o'[(I)	dl]	=	F~S)	10	["'[(I)	dl	=	lim	F(s)	if1.""[(I)	dl	exists	o	s-O	11	~[e-a'f(t)]	=	F(s	+	a)
12	!:e[f(t	-	a)l(t	-	a)]	=	e-asF(s)	a~O	13	dP(s)	!:e[tf(t)]	=	-	-	-	ds	14	d2	~[t2f(t)]	=	-2	F(s)	ds	dn	15	~[tnf(t)]	=	(-l)n-F(s)	n	=	1,2,3,	...	dsn	16	f£[7[(I)]	=	1""F(S)	ds	if	lim.!.f(t)	exists	I-ot	17	~[f(~)]	=	aF(as)	20	30.	Sec.	2-3	Laplace	Transformation	f(t)	l(t)	f(1	-	DC)	l(t	-	DC)	o	o	DC	Figure	2-S	Functionf(t)l(t)	and	translated	function	f(t	-	a)I(1	-	a).	By	changing	the
independent	variable	from	t	to	7,	where	7	=	t	-	a,	we	obtain	foof(t	-	£1')l(t	-	£1')e-st	dt	=	l°Of	(7)1(T)e-S(T+a)	dT	10	-a	21	Noting	that	f(T)1(7)	=	0	for	T	<	0,	we	can	change	the	lower	limit	of	integration	from	-a	to	O.Thus,	l°O	f	(T)l(T)e-S(T+a>	dT	=	f	OO	f	(7)1(T)e-S(T+a)	dT	-a	10	=["'j(T)e-STe-as	dT	=e-as100	j(T)e-ST	dT	=e-asp(s)	where	P(s)	=	~(f(t)]	=
1°Oj	(tv"	dl	Hence,	;Eff(t	-	a)l(t	-	a)]	=	e-aSF(s)	a~O	This	last	equation	states	that	the	translation	of	the	time	functionf(t)l(t)	by	a	(where	a	~	0)	corresponds	to	the	multiplication	of	the	transform	F(s)	bye-as.	Pulse	function.	Consider	the	pulse	function	shown	in	Figure	2-6,	namely,	A	f(t)	=-	to	=0	where	A	and	to	are	constants.	for	0	<	t	<	to	for	t	<	0,	to	<
t	The	pulse	function	here	may	be	considered	a	step	function	of	height	Alto	that	begins	at	t	=	0	and	that	is	superimposed	by	a	negative	step	function	of	height	Alto	31.	22	The	Laplace	Transform	Chap.	2	1(1)	A	to	o	4_	00	to	Figure	2-6	Pulse	function.	Figure	2-7	Impulse	function.	beginning	at	t	=	to;	that	is,	A	A	f(t)	=	-1(t)	-	-1(t	-	to)	to	to	Then	the	Laplace
transform	off(t)	is	obtained	as	~[J(t)l	=	~[~1(t)]	-	~[~1(t	-	to)	]	A	A	-SI	=	-	-	-e	0	tos	tos	A	_	=	-(1	-	e	stO)	tos	(2-1)	Impulse	function.	The	impulse	function	is	a	special	limiting	case	of	the	pulse	function.	Consider	the	impulse	function	f	(t)	=	lim	A	for	0	<	t	<	to	to-O	to	=	0	for	t	<	0,	to	<	t	Figure	2-7	depicts	the	impulse	function	defined	here.	It	is	a	limiting
case	ofthe	pulse	function	shown	in	Figure	2-6	as	to	approaches	zero.	Since	the	height	of	the	impulse	function	is	Alto	and	the	duration	is	to,	the	area	under	the	impulse	is	equal	to	A.	As	the	duration	to	approaches	zero,	the	height	Alto	approaches	infinity,	but	the	area	under	the	impulse	remains	equal	to	A.	Note	that	the	magnitude	of	the	impulse	is
measured	by	its	area.	From	Equation	(2-1),	the	Laplace	transform	of	this	impulse	function	is	shown	to	be	:Eff(t)]	=	lim	[~(1	-e-sto)]	10-0	tos	~[A(l	-	e-S1o	)]	.	dto	As	=hm	=-=A	10-0	d	()	s	-	tos	dto	32.	Sec.	2-3	Laplace	Transformation	23	Thus,	the	Laplace	transform	of	the	impulse	function	is	equal	to	the	area	under	the	impulse.	The	impulse	function
whose	area	is	equal	to	unity	is	called	the	unit-impulse	function	or	the	Dirac	delta	function.	The	unit-impulse	function	occurring	at	t	=	to	is	usually	denoted	by	eS(t	-	to),	which	satisfies	the	following	conditions:	eS(t	-	to)	=	0	eS(t	-	to)	=	00	J~6(1	-	'0)	dl	=	1	for	t	*to	for	t	=	to	An	impulse	that	has	an	infinite	magnitude	and	zero	duration	is	mathematical
fiction	and	does	not	occur	in	physical	systems.	If,	however,	the	magnitude	of	a	pulse	input	to	a	system	is	very	large	and	its	duration	very	short	compared	with	the	system	time	constants,	then	we	can	approximate	the	pulse	input	by	an	impulse	function.	For	instance,	if	a	force	or	torque	input	f(t)	is	applied	to	a	system	for	a	very	short	time	duration	0	<	t
<	to,	where	the	magnitude	of	f(t)	is	sufficiently	large	so	that	J;o	f(t)	dt	is	not	negligible,	then	this	input	can	be	considered	an	impulse	input.	(Note	that,	when	we	describe	the	impulse	input,	the	area	or	magnitude	of	the	impulse	is	most	important,	but	the	exact	shape	of	the	impulse	is	usually	immaterial.)	The	impulse	input	supplies	energy	to	the	system
in	an	infInitesimal	time.	The	concept	of	the	impulse	function	is	highly	useful	in	differentiating	discon-	tinuous-time	functions.	The	unit-impulse	function	eS(t	-	to)	can	be	considered	the	derivative	of	the	unit-step	function	l(t	-	to)	at	the	point	of	discontinuity	t	=	to,	or	d	eS(t	-	to)	=	dt	l(t	-	to)	Conversely,	if	the	unit-impulse	function	eS(t	-	to)	is	integrated,
the	result	is	the	unit-	step	function	l(t	-	to).	With	the	concept	of	the	impulse	function,	we	can	differenti-	ate	a	function	containing	discontinuities,	giving	impulses,	the	magnitudes	of	which	are	equal	to	the	magnitude	of	each	corresponding	discontinuity.	Multiplication	of	fIt)	bye-at.	If	f(t)	is	Laplace	transformable	and	its	Laplace	transform	is	F(s),	then
the	Laplace	transform	of	e-at	f(t)	is	obtained	as	~[e"""f(l)l	=	[X>e-alf(t)e-st	dl	=	F(s	+	a)	(2-2)	We	see	that	the	multiplication	of	f(t)	bye-at	has	the	effect	of	replacing	s	by	(s	+	a)	in	the	Laplace	transform.	Conversely,	changing	s	to	(s	+	a)	is	equivalent	to	mUltiplyingf(t)	bye-at.	(Note	that	a	may	be	real	or	complex.)	The	relationship	given	by	Equation	(2-2)
is	useful	in	finding	the	Laplace	transforms	of	such	functions	as	e-at	sin	wt	and	e-at	cos	wt.	For	instance,	since	~[sin	wt]	=	2	W	2	=	F(s)	s	+	w	and	s	~[cos	wt]	=	2	2	=	G(s)	s	+	w	33.	24	The	Laplace	Transform	Chap.	2	it	follows	from	Equation	(2-2)	that	the	Laplace	transforms	of	e-at	sin	wt	and	e-at	cos	wt	are	given,	respectively,	by	and	w	!e[e-al	sin	wt]
=	F(s	+	a)	=	-	-	-	-	-	(s	+	a)2	+	w2	s+a	!e[e-al	cos	wt]	=	G(s	+	a)	=	-----::-	(s	+	a)2	+	w2	Comments	on	the	lower	limit	of	the	Laplace	integral.	In	some	cases,Jtt)	possesses	an	impulse	function	at	t	=	O.	Then	the	lower	limit	of	the	Laplace	integral	must	be	clearly	specified	as	to	whether	it	is	0-	or	0+,	since	the	Laplace	transforms	ofJtt)	differ	for	these	two
lower	limits.	If	such	a	distinction	of	the	lower	limit	of	the	Laplace	integral	is	necessary,	we	use	the	notations	and	.:£_[f(t)]	=	["'[(t)e-n	dt	=	.:£+[f(t)]	+	[0+[(t)e-st	dt	IfJtt)	involves	an	impulse	function	at	t	=	0,	then	since	[[(t)e-st	dt	..	0	for	such	a	case.	Obviously,	ifJtt)	does	not	possess	an	impulse	function	at	t	=	0	(i.e.,	if	the	function	to	be	transformed	is
finite	between	t	=	0-	and	t	=	0+),	then	!e+[f(t)]	=	!e_[f(t)]	Differentiation	theorem.	The	Laplace	transform	of	the	derivative	of	a	function/(t)	is	given	by	.:£[:/(t)]	=	sF(s)	-	[(0)	(2-3)	where	.f(0)	is	the	initial	value	of.f(t),	evaluated	at	t	=	O.	Equation	(2-3)	is	called	the	differentiation	theorem.	For	a	given	function	.f(t),	the	values	of	/(0+)	and	1(0-)	may	be	the
same	or	different,	as	illustrated	in	Figure	2-8.	The	distinction	between	1(0+)	and	1(0-)	is	important	when.f(t)	has	a	discontinuity	at	t	=	0,	because,	in	such	a	case,	dJtt)/dt	will	34.	Sec.	2-3	Laplace	Transformation	/(/)	/(0	+)	/(/)	Flgure	2-8	Step	function	and	sine	function	indicating	initial	values	at	1	=	0-	and	1	=	0+.	25	involve	an	impulse	function	at	t	=	O.
If	1(0+)	::F	1(0-),	Equation	(2-3)	must	be	modified	to	~+[:,t(t)]	=	sF(s)	-	[(0+)	~-[:,t(t)]=	sF(s)	-	/(0-)	To	prove	the	differentiation	theorem,	we	proceed	as	follows:	Integrating	the	Laplace	integral	by	parts	gives	roo	-st	I00	(:JO[	d	]	-sf	10	I(t)e-	st	dt	=	I(t)	~s	0-	10	dtl(t)	~s	dt	Hence,	1(0)	1	[d	]F(s)	=	-	+	-;£	-/(t)	s	s	dt	It	follows	that	~[:t[(t)]=	sF(s)	-	[(0)
Similarly,	for	the	second	derivative	ofI(t),	we	obtain	the	relationship	~[;:[(t)]=	h(s)	-	s/(O)	-	j(O)	where	1(0)	is	the	value	of	dl(t)ldt	evaluated	at	t	=	O.	To	derive	this	equation,	define	d	dtl(t)	=	g(t)	35.	26	Then	The	Laplace	Transform	Chap.	2	!'£[:I:/(/)]	=!'£[:lg(/)]	=	s!'£[g(t)]	-	g(O)	=	S!'£[:,t(/)	]	-	j(O)	=l-P(s)	-	sl(O)	-	i(O)	Similarly,	for	the	nth	derivative	of
f(t),	we	obtain	!'£[:/:t	0,	and	if	s2	+	as	+	b	=	0	has	a	pair	of	complex-conjugate	roots,	then	expand	F(s)	into	the	following	partial-fraction	expansion	form:	c	ds	+	e	F(s)	=	-;	+	-s2-+-	a	-	s	-+-b	(See	Example	2-3	and	Problems	A-2-15,	A-2-16,	and	A-2-19.)	ExampJe2-3	Find	the	inverse	Laplace	transform	of	F(s)	=	2s	+	12	s2	+	2s	+	5	Notice	that	the
denominator	polynomial	can	be	factored	as	s2	+	2s	+	S	=	(s	+	1	+	j2)(s	+	1	-	j2)	The	two	roots	of	the	denominator	are	complex	conjugates.	Hence,	we	expand	F(s)	into	the	sum	of	a	damped	sine	and	a	damped	cosine	function.	Noting	that;	+	2s	+	S	=	(s	+	1)2	+	22	and	referring	to	the	Laplace	trans-	forms	of	e-al	sin	wt	and	e-al	cos	Cdt,	rewritten	as	and
_	s+a	.'i[e	at	cos	Cdt]	=	2	2	(s	+	a)	+	w	we	can	write	the	given	F(s)	as	a	sum	of	a	damped	sine	and	a	damped	cosine	function:	2s	+	12	10	+	2(s	+	1)	F(s)	-	-	-	-	-	-	s2	+	2s	+	S	(s	+	1)2	+	22	=S	2	+2	s+1	(s	+	1)2	+	22	(s	+	1)2	+	22	It	follows	that	f(t)	=	.'i-I[F(s)]	=	SX-	1	[(S	+	1~2	+	22]	+	2!C	1	[(S	+S1;21+	22]	=	Se-1	sin	2t	+	2e-1	cos	2t	t	~	0	Partial-
fraction	expansion	when	F(s)	involves	multiple	poles.	Instead	of	discussing	the	general	case,	we	shall	use	an	example	to	show	how	to	obtain	the	partial-fraction	expansion	of	F(s).	(See	also	Problems	A-2-17	and	A-2-19.)	Consider	F	(s)	=	s2	+	2s	+	3	(s	+	1)3	42.	Sec.	2-4	Inverse	Laplace	Transformation	33	The	partial-fraction	expansion	of	this	F(s)
involves	three	terms:	F(	B(s)	~	~	b1	s)	=	A(s)	=	(s	+	1?	+	(s	+	1)2	+	S	+	1	where	b3,	b2,	and	b1	are	determined	as	follows:	Multiplying	both	sides	of	this	last	equation	by	(s	+	1?,	we	have	B(s)	(s	+	1)3	A(s)	=	~	+	b,,(s	+	1)	+	b1(s	+	1)2	(2-8)	Then,	letting	s	=	-1,	we	find	that	Equation	(2-8)	gives	[	(s	+	1)3	B	(S)]	=	~	A(s)	s=-1	Also,	differentiating	both
sides	of	Equation	(2-8)	with	respect	to	s	yields	:s	[(s	+	1)3	!~:~]	=	~	+	2bt(s	+	1)	(2-9)	H	we	let	s	=	-1	in	Equation	(2-9),	then	!£[(S	+	1?B(S)]	=	~	ds	A(s)	s=-1	Differentiating	both	sides	of	Equation	(2-9)	with	respect	to	s,	we	obtain	~[(S	+	1)3	B	(S)]	=	2b1ds2	A(s)	From	the	preceding	analysis,	it	can	be	seen	that	the	values	of	~,	~,	and	b1	are	found
systematically	as	follows:	~	=	[(s	+	1)3!~:~L-I	=	(s2	+	2s	+	3)S=-1	=2	~	=	{:s	[(s	+	1)3	!~:~]L-I	=	[~(S2	+	2s	+	3)]ds	s=-1	=	(2s	+	2)s=-1	=0	b1=	~	{if.[(S	+	1)3	B(S)]}	2!	ds2	A(s)	s=-1	=	J,[d	2	2(s2	+	2s	+	3)]2.	ds	s=-1	=1.(2)	=	1	2	43.	34	The	Laplace	Transform	Chap.	2	We	thus	obtain	f(t)	=	~-l[F(s)]	_;e-l[	2	]	+	:e-1[	0	]	+	;e-l[_1_]-	(s	+	1)3	(s	+	1)2
S	+	1	=	t2e-t	+	0	+	e-t	=	(t2	+	1)e-t	t	~	0	2-5	SOLVING	LINEAR,	TIME-INVARIANT	DIFFERENTIAL	EQUATIONS	In	this	section,	we	are	concerned	with	the	use	of	the	Laplace	transform	method	in	solving	linear,	time-invariant	differential	equations.	The	Laplace	transform	method	yields	the	complete	solution	(complementary	solution	and	particular
solution)	of	linear,	time-invariant	differential	equations.	Classical	methods	for	finding	the	complete	solution	of	a	differential	equation	require	the	evaluation	of	the	integration	constants	from	the	initial	conditions.	In	the	case	of	the	Laplace	transform	method,	however,	this	requirement	is	unnecessary	because	the	initial	conditions	are	automatically
included	in	the	Laplace	transform	of	the	differential	equation.	If	all	initial	conditions	are	zero,	then	the	Laplace	transform	of	the	differential	equation	is	obtained	simply	by	replacing	dldt	with	s,	d21dt2	with	s2,	and	so	on.	In	solving	linear,	time-invariant	differential	equations	by	the	Laplace	trans-	form	method,	two	steps	are	followed:	1.	By	taking	the
Laplace	transform	of	each	term	in	the	given	differential	equa-	tion,	convert	the	differential	equation	into	an	algebraic	equation	in	s	and	ob-	tain	the	expression	for	the	Laplace	transform	of	the	dependent	variable	by	rearranging	the	algebraic	equation.	2.	The	time	solution	of	the	differential	equation	is	obtained	by	rmding	the	in-	verse	Laplace	transform
of	the	dependent	variable.	In	the	discussion	that	follows,	two	examples	are	used	to	demonstrate	the	solu-	tion	of	linear,	time-invariant	differential	equations	by	the	Laplace	transform	method.	Example	2-4	Find	the	solution	x(t)	of	the	differential	equation	:i	+	3x	+	2x	=	0,	x(O)	=	a,	x(O)	=	b	where	a	and	b	are	constants.	Writing	the	Laplace	transform
ofx(t)	as	Xes),	or	;e[x(t)]	=	Xes)	we	obtain	!e[x]	=	sX(s)	-	x(O)	!e[:i]	=	s2Xes)	-	sx(O)	-	x(O)	44.	Sec.	2-5	Solving	Linear,	lime-Invariant	Differential	Equations	The	Laplace	transform	of	the	given	differential	equation	becomes	[s2X(s)	-	sx(O)	-	x(O)]	+	3[sX(s)	-	x(O)]	+	2X(s)	=	0	Substituting	the	given	initial	conditions	into	the	preceding	equation	yields
[s2X(s)	-	as	-	b]	+	3[sX(s)	-	a]	+	2X(s)	=	0	or	(S2	+	3s	+	2)X(s)	=	as	+	b	+	3a	Solving	this	last	equation	for	X(s),	we	have	X	(s)	=	as	+	b	+	3a	=	as	+	b	+	3a	=	_2o_+_b	_	_a	_+_b	s2	+	3s	+	2	(s	+	1)(s	+	2)	s	+	1	s	+	2	The	inverse	Laplace	transform	of	X(s)	produces	x(t)	=	~-l[X(S)]	=	~-1[2a	+	b]_	;£-I[a	+	b]	s+1	s+2	=	(20	+	b)e-I	-	(a	+	b)e-2t	t	~	0	35
which	is	the	solution	of	the	given	differential	equation.	Notice	that	the	initial	condi-	tions	a	and	b	appear	in	the	solution.	Thus,x(t)	has	no	undetermined	constants.	Example	2-5	Find	the	solution	x(t)	of	the	differential	equation	x	+	2X	+	5x	=	3,	x(O)	=	0,	x(O)	=	0	Noting	that	;£[3]	=	3/s,	x(O)	=	0,	and	X(O)	=	0,	we	see	that	the	Laplace	trans-	form	of	the
differential	equation	becomes	3	S2X(s)	+	2sX(s)	+	5X(s)	=	-	s	Solving	this	equation	for	X(s),	we	obtain	3	X(s)	=	s(S2	+	2s	+	5)	31	3	s+2	=--	-	5	s	5	s2	+	2s	+	5	31	3	2	5s	Hence,	the	inverse	Laplace	transform	becomes	x(t)	=	;£-l[X(s))	3	s	+	1	5(s+I)2+22	-~;£-1[!]_	~~-1[	2	]_	~;£-1[	S	+	1	]	-	5	s	10	(s	+	1)2	+	22	5	(s	+	1)2	+	22	3	3	-I	•	2	3	-I	2=	-	-	-	e	SID	t
-	-	e	cos	t	5	10	5	t~O	which	is	the	solution	of	the	given	differential	equation.	45.	36	The	Laplace	Transform	Chap.	2	EXAMPLE	PROBLEMS	AND	SOLUTIONS	Problem	A-2-1	Obtain	the	real	and	imaginary	parts	of	2	+	j1	3	+	j4	Also,	obtain	the	magnitude	and	angle	of	this	complex	quantity.	Solution	2	+	j1	(2	+	j1)(3	-	j4)	-	-	=	3	+	j4	(3	+	j4)(3	-	j4)	2	.1	=
5"	-	'5"	Hence,	6+j3-j8+4	9	+	16	10	-	j5	25	2	real	part	=	-	5'	.	.	.1	nnagmary	part	=	-,-5	The	magnitude	and	angle	of	this	complex	quantity	are	obtained	as	follows:	magnitude	=	~n)'	+	(~1)'	=	&=	~	=	0.447	-115	-1	angle	=	tan-1-	-	=	tan-1-	=	-26.565°	215	2	Problem	A-2-2	Find	the	Laplace	transform	of	Solution	Since	f(l)	=	0	1
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